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and
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Abstract
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A summary is presented of several results obtained recently concerning the time
evolution of’ a aoliton on a lattice. They include the derivation of a Liouville-Von
Neumann equation for the density matrix from the discrete nonlinear Schr5dinger
equation and, for the two-site system, e.g. a molecular dimer, the derivation and
explicit solution of a chmed nonlinear evolution equation obe ed by the difference

iof the probabilities of occupation of the two Bites. The pro abilities are men to
evolve in the form of Jacobian elliptic functions, and a transition from free to oelf-
trapped behavior is seen at appropriate relative values of the intersite interaction
and the nonlinearity amuneter. Featurea such as the polaron (or soliton) bandwidth
reduction conjecture if hor t e general pohron transport roblem are men to emerge

{as a consequence. Exact expressions for observable suc as the scattering function
of relevance to quasi-elastic neutron diffraction experiments are displayed and shown
to contain explicit nonlinear characteristics.

The discrete nonlinear Schr5dinger equation, which dcncribea ● number of phe-
nomena in varioun fields of physics, may be written as

\ &m(t)/d: = -iV(cm+l + cm-l) + 8X[Cm12Cm (1]

where cm is the amplitude far the system to be in state lm >, V ia the interstate
matrix element (assumed %eareat-neighborn in (l)) describing the linear evolution
among the states [m >, and x iII the nonlinearity parameter. In the specific system of
an electron or exciton in a cryotal interacting strongly with phonona or vibrations,
Im > denotvs the (localized) Wannier state centered on mite m, V in roportional to I

fthe bandwidth of the bare electron or exciton, and x is the energy owering due to
polaronic effects, often written M a sum of the products of the vib~itional energies of
the participating modes and the square of their coupling constants with the electron
or exciton. in (I), we have net h = I.

Equation (1) or similar equations have been written down or derived by a variety

HI
of eople in many different contexts 1-7 . While solutions for its continuum limit are

!’
(1

we 1 known [7,analytical eolutions or t e discrete chain are not available. We have
recently foun [8] exact tim~de endent Bolutions for 1) for the caae of a dimer, i.e.

I Iwhen m can take on valuea 1 an 2 only, and have app ied them [g] to the calculation
of experimental observabnm such aa the quasi-elastic neutron scattering function and
fluorescence depolarization. A brief description of those oolutiom and ●p lications

{follows, our reasons for displaying these reaulta being two. Firot, they e OW, in a
completely explicit

*Work sup orted in part by the National Science Foundation under rant no. DMR-
J 1?850638 an by the Department of Energy under grmt noe, 74t)5/E G-36 and BES/

DMS-8&03-02.



manner, the phenomenon of self-trapping, energy mismatch behavior, polaron/soliton
bandwidth reduction and other expected and conjectured features of the evolution
described by the equation for the chain of arbitrary length, or generally for a crystal.
And second, far from being u overidealized system, the dimer is interesting in its own
right and attainable experimentally [10 12]. Calculations for dimer observable are
therefore not merely pedagogical in nature but have direct significance in experiments.

Before proceeding further, a comment concerning terminology might prove help-
ful. Some current usage [2,13] refers to a “soliton” as simply a quaaiparticle whose
time evolution and motion are described by s nonlinear equation such aa (1), inde-
pendent of the total size of the system. In this usage, phrases like a %cditon in a
Wannier or Bloch state” and the idea of a mliton on a dimer are clearly acceptable. In
contrast, another usage reserves the term ‘solitonm for localized, nonlinear solutions
on] y in spatially extended systems (i.e., much larger than a dimer). Those readers
who ?refer the former usage should look upon the present analysis as that of soliton
motion in a dimer. Thoee who favor the latter terminology shou!d interpret it simply
as an investigation of energy transfer in a nonlinear dimer.

The derivation of the Liouvill-Von Neumann equation obeyed by the density
matrix p~m from f1) is straightforward. Equation (1) and ita complex conjugate can
be combined to give

dpm./dt = iV(pm+ln + pm.in - pmn+l - P~n- 1) + ix (Prom - P.. )Pm. (2)

provided x is assumed real. We point out that a iinear chain with varying site energies
would obey (2) with the replacement of the second term ix(~rnm -p~~ )p~~ by the energy
mismatch term -i(Em -En )pm., where Em is the site energy at m. The energy lowering
-xp~~ which equals the prodl:ct of x and the probability of occupation of site m is
thus completely evident in (2). For the dimer, (2) yields

dpll/dt = -iV(hl - pIa) (3)

\ dpla/dt = -iV(~z - PI1) +ix(pll - pxI)pIz (4)

with corresponding equations for ~a and ml. The combination of (3) and (4) and a
Straightforward calculation involving the elimination of the off-diagonal elements of
the denstiy matrix leads to the following closed nonlinear equation for the probability
difference p(~) = pll - ~z:

&p/dt2 = Ap - Bps . (5)

In the absence of the nonlinearity, i.e. for x = O, the coefficient A equals -4v~, B
vanishes, and the probability difference p oscillates sinusoidally. In the presence of
the nonlinearity, for arbitrary initial conditions, A and B are given by

A = (Xa/2)p5 - 4V2 - 2VX(*, + p,z)o ; B = (x2/2) (6)

where the subscript O denotes the initial (i.e., t = O) value.

The general solution of (5) and (6) may be written M

p(t) = ccn[(cx/2k)(t - :(J)[k]= cl%nl(cx/2)(t - :0) [ I/k] (7)

l/k’ = 2 + (1/@) l(4v/x)a + (8v/x)(mI + /h2)0 - 2P~] (8)

where C and to are arbitrary consta~,ts to be determined from the initial conditions,
the values of p and dp/dt at t E 0. One can verify directly the general solution

[7\’ by substitutin~ it in (5).

Three consequences of (7) are interesting to explore. The first involves the ex-
traction of the specific form of the stationary states of the system by considering
the situation in which all the eiements of p, and therefore also p, are independent



of t. The second is relevant to the initial condition that only one of the two sites is
occupied, and shows a transition from free to self-trapped behavior. And the third
ie an application of (7) to the calculation of an explicit observable, the scattering
function.

To extract the stationary states from (7), we differentiate it twice and equate both
dp/dt and #p/dt2 to O for all t. This leads to the results that C = ~ and ~ = o and to
the condition l/k = O. When substituted in (8), this results in

(4v/x)2 + (8v/x)(hl + /u2)o = 0, (9)

and thence to explicit expressions for the initial values of the dennity matrix elements,
These initial values are, however, the valuea for all timee, since the state under
consideration is stationary, Rewriting the elements of p in terms of the coefficients
of the eigenstates in the site representation, i.e., c1 and C27 we arrive at

Ic,l = (1/2) 1/2{1 + [1 - (2v/#]’/~}’/~ (lo)

lc~l= (1/2) 1/2{1 - [1 - (2v/x)~]’/~}’/a (11)

which specifies the stationary states precisely from the general time dependent s-
lution (7). This exercise demonstrate that from our general solution for all times
one may recover the stationary dimer results given earlier by Eilbeck et al. [6]. One

1
can obtain (10) and (11 directly, and immediately, from our Eq. (5) by equating its
right hand side to zero or ~ # O.

As the second consequence of 7, consider the initial condition that only one of
the two sites is occupied initially. M e initial probability difference iE then ~ = 1 (or
- 1), and the off-diagonal elements of the density matrix are zero initially, Then,

A = (#/2) - 4VZ ; B = (#/2) {12)

The probability difference is given by

~ p(t) = cn(2vt [ k = x/4v) for x/4v <1 (13)

if the nonlinear parameter ia small enough, but by

p(t) = dn(~xt I k = 4V/X) for x/4V >1 (14)

if it in large enough. In the former case the oecillationn of the particle are such that
it resides equally on both mites but in the latter case it resides more on the initially
occupied site. The former caee deacribee free behavior while the latter represents
incomplete intemite transfer, i.e. relative trapping as would be char~teristic of ari
energy mismatch. There ie thue ● transition at x = 4v. As ● function of x, the
detailed behavior b M follows.

For x = O, we ●e that the particle oecillatea between the two aitee with period
K/V. As x increanee, the oscillations of the particle begin to depart from trigono-
metric behavior, The period of the oscillations of the particle is T = 2K(k)/V. It
increases u X/4V increaeee, As x a proachea very cloee to 4V, the oscillations of the

rparticle show a marked departure rom trigonometric behavior: The eriod becomes
enormous aa the particle oecillatee sluggishly between the two sites. $ he logarithmic
approximation to ~(k) is appropriate here and the period of the oscillations of the
particle is given by

T c (1/v) f~{16/[i - (xa/10V2)]) (15)

The free particle motion of the particle between the two sites for x c 4V described
above id depicted in curves (a) and (b) of Fig. 1, When x equals 4V, a transition



occurB between this free motion and self-trapped behavior. At the transition, the
equalization of the probabilities of the two sites follows ex=tly a “aech” evolution:

p(t) = sech(2Vt) = sech(xt/2) (16)

and the period of the oscillation iB infinite. This is shown in curve (c) of Fig. 1.
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Figure 1. The difference in the robabilities of occupation of the two sites in a dimer

(

lotted as a function of time t in units of 2V) for various values of (x/4V): (a) 0.95,

T)b 0.9995, (c) 1, (d) 1.0001, (e 1.75. Curves a and b are indicative of frec+particle
motion, c describes the transition, and d and e represent self-trapping behavior.

As x increuws beyond the transition, the oscillation no longer follow the CII

function but are described by the dn function (see (14)), In this region the probability
difference never crozsez O. Increasing x haa now two effects: the amplitude of the
oscillations decreases and the period also decreases, Far away from the transition,
as X/4V approached infinity, the oscillations follow a trigonometric evolution, i.e., can
be approximated by

p(t) -1- (lw’/x’)8in~(xt/2) (17)

This is precisely the evolution of the probability difference in a linear dimer with a
true energy mismatch: the amplitude decreazes with an increMe in the amount of
the energy mismatch. The period of the Oscillations is simply Ur/x,

This self-trapped particle behavior in depicted in curven (d) and (e) of Fig. 1. In
the limit as x/4V tends to infinity, the particle is entirely self-trapped an the amplitude
(and also the period) of the oscillations becomes zero,

A consequence of our analysi~ is the clear demonstration that a olaronic/
1’solitonic bandwidth reductior, which represents a lowering of the ve ocity of the car-

rier, iB ISnatural outcome of the discrete nonlinvar Schr&linger equation in the context
of the dimer, Being inversely proportional to the period of oscillation, the reduced



(or effective) bandwidth Vcll drops off sharply at the transition as the reciprocal of
a logarithm:

V,ft = v[(2/m)K(x/4V)]-1 N V[x/1n{16/1 - (X2/16V2))] . (18)

the second equality in (18) being valid close to the transition. Equation (18) es-
tablishes unambiguously that a polaronic/solitonic bandwidth reduction does indeed
occur.

Finally, as the third consequence of (7), we display the scattering function S(U)
which describes the intensity of probe particles such - neutrons which would lose or
gain energy k when scattered off the quasiparticle (the ‘moving soliton” ) as it moves
between the dimer sites [9]. The general scattering function S(q, w), which involves
the (dimensionless) wavevector difference q as well as the frequency difference u, is,
in the csse of a dimer, ● weighted sum of m elastic contribution and the contribution
S(U), the weights being determined by the angle of the scattered beam to the line

/
joining the two sites of the dimer [9,14 . The contribution S(U) is identical to the
Fourier transform of the Van Hove corre ation function, which, at high temperatures,
becomes identical to p t), the difference in the probabilities of the two sites for init~al

\
single site occupation 15,16]. The Fourier transform of (7) for the initial single site
occupation thus gives 9]

S(w) = x[2kK(k)l-1 fi(sechwR<)[6(u -%) + 6(W +%)] (19)
m=o

s(w) = (1/4v)Wh(wlr/4v) = (1/x) aech(wx/x) (20)

S(w) = s[2K(l/k)]-1{6(u) + &Ch wR>)[6(QJ - tin) + 6(u + tin)]} (21)
m=1

for, respectively, the three cases x < 4V, x = 4V, and x > W. h (19)-(21), R< is given
by R<(k) = K~(l - k2)1t2]/2V, and R>(k) = (1/k) R<(l/k). In (19) the summation runs
fromn=otomandum= 2V, /(2n+ 1). h (21), the summation is from n = 1 to tx and

k&m= (~mx)/2R, ~). While furt er discussion of these scattering results and an extension
for arbitrary temperatures ma be found elsewhere 9], we point out here that, as
the nonlinearity is increased,

(
19) exhibits a L‘march of the spectral lines towards

the origin, (20)represents a co lapse of the &function lines onto a finite spectrum at
the transition, and (21 ) shows an interesting reemergence of the $-functions followed
by a strengthening of the line at the origin and a weakening, and outward “march’,
of the other lines, This behavior of the spectrum of the nonlinear undamped dimer
as the nonlinearity is changed, mfiembles very closely, but is not identical to, the
phenomenon of motional narrowing exhibited by the spectrum of the linear damped
dimer as the damping is changed.
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